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Abstract

Deposition of log-normally distributed particles in isothermal and heated turbulent boundary layers is
studied via Lagrangian random-walk simulations. The velocity and temperature ®elds and the
thermophoretic force are considered to be Gaussian random ®elds. Their mean values were obtained
from law-of-the wall relations (velocity and temperature) and from a Knudsen number dependent
expression for the thermophoretic force; their rms ¯uctuations were determined by polynomial ®ts to
experimental data. The e�ect of aerodynamic (Sa�man) lift and crossing trajectories on particle
deposition is examined. We ®nd that for particle sizes in the di�usion±impaction deposition regime the
mean thermophoretic force gives the dominant contribution to total particle deposition, whereas the
thermophoretic ¯uctuating force has only a limited contribution. The e�ect of lift and crossing
trajectories on deposition is small with respect to the e�ect of the mean thermophoretic force,
comparable to the e�ect of the ¯uctuating thermophoretic force, and dependent on the mean particle
size. The e�ect of crossing trajectories (in the presence of lift) is small in isothermal ¯ows. A limited
number of particle runs was found su�cient to obtain steady-state total deposition velocities in
simulations of log-normal particle-size distributions. Simulation results are compared to experimental
data: we ®nd reasonable agreement for total deposition velocity, deposited mass, and axial location of
maximum deposition. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Deposition and resuspension tests in the experimental facility STORM (Simpli®ed Tests On
Resuspension Mechanisms), De Santi et al. (1993), revealed that thermophoresis modi®es
considerably particle deposition in turbulent boundary layers. The understanding and
modelling of the e�ect of thermophoresis on turbulent boundary layer particle deposition, an
e�ect that has been considered to be simply additive to eddy impaction, is the primary aim of
this work.
The STORM experiments form part of a project co-sponsored by the European Commission

and ENEL, the Italian Electricity Board. These large-scale experiments investigate particle
deposition and resuspension under turbulent ¯ow conditions. The interest in thermophoretic
particle deposition in turbulent boundary layers was stimulated by STORM experiments where
the 10-m test pipe was thermally insulated: in this case, i.e., in the absence of a temperature
gradient from the bulk ¯ow to the wall, measurements by Krasenbrink et al. (1996) showed
almost no dry-aerosol deposition. On the other hand, a post-test calculation of a deposition
experiment in the presence of a temperature gradient (SD07) with a commonly used ®ssion-
product aerosol transport code, RAFT, Im et al. (1985), showed a marked increase in
deposition: eddy impaction was calculated to be the dominant deposition mechanism
contributing 81% of all deposition, whereas thermophoresis was responsible for the remaining
19%. One-dimensional codes such as RAFT cannot model accurately the velocity and
temperature gradients near the wall, thereby crudely approximating the most important region
for particle deposition. This work is an attempt to address this issue.
The approach we follow in the two-dimensional (streamwise and normal) numerical

simulation is based on the work of Kallio and Reeks (1989), further extended by Zumwalt and
Kallio (1990). A Lagrangian approach is taken to simulate particle motion in the turbulent
boundary layer of a pipe ¯ow and the turbulent velocity ®eld is modelled as a ®eld of discrete
eddies with random velocities (Gaussian with an experimentally determined root mean square)
and time scales (exponentially distributed). A Lagrangian random-walk (Monte-Carlo)
approach was chosen instead of an Eulerian approach because it better allows the investigation
of deposition processes as a function of particle sizes since overall deposition is determined by
particle tracking rather than consideration of concentration gradients. Similar to the velocity
decomposition into a mean and a Gaussian ¯uctuating component, both the temperature ®eld
and the thermophoretic force are decomposed into two components. The mean temperature
across the boundary layer is given by the law-of-the wall pro®le, whereas the stochastic
properties of the temperature ®eld are taken to be similar to those of the velocity ®eld in
agreement with experimental observations: Finnicum and Hanratty (1985), Krishnamoorthy
and Antonia (1987), and see also Lyons et al. (1991) for a comparison of experimental data on
temperature ¯uctuations with a direct numerical simulation. We show how the mean and the
¯uctuating (to leading order in ¯uctuations) thermophoretic force are evaluated, and their
contribution to particle deposition for a typical STORM experiment is analyzed.
Mean velocity values in the turbulent boundary layer are commonly modelled with the

universal law-of-the-wall (Schlichting, 1979). Pipe ¯ow and channel ¯ow do not exactly follow
the same scaling laws, particularly at low Reynolds numbers and at distances from the wall
greater than y� � 300, where y+ is the distance to the wall in wall units. Experimental
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observations by Wei and Wilmarth (1989) in turbulent channel ¯ow give a mean velocity
pro®le which follows the logarithmic law up to the channel centre line, approximately y� �
1000: Laufer's data (Laufer, 1954), however, con®rm the logarithmic velocity pro®le only up to
a dimensionless distance from the wall of y� � 300: Both observations refer to experiments at
Reynold numbers of approximately 40,000. The logarithmic law for either ¯ow type may also
di�er in the von Karman constant and in the additive constant. However, for higher Reynolds
numbers and for a boundary-layer thickness of about y� � 200, the regime of interest in our
simulations, it is not necessary to di�erentiate between pipe and channel ¯ow.
Previous numerical simulations demonstrated good agreement with experimental data for

isothermal (Kallio and Reeks, 1989), and cold-wall boundary condition experiments (Zumwalt
and Kallio, 1990). A calculation with hot-wall boundary conditions by Zumwalt and Kallio
(1990) showed considerable underprediction of particle deposition. They argued that a detailed
model for coherent turbulent structures close to the wall would improve their results.
Moreover, they suggested that increasing wall roughness would lead to increased deposition. In
their simulations they considered only the e�ect of the mean thermophoretic force, neglecting
the e�ect of temperature ¯uctuations on particle deposition. Our simulation results are
compared with the most frequently used isothermal test series by Liu and Agarwal (1974); as in
the previously mentioned simulations our results show good agreement with their experimental
data. For non-isothermal cases our results are compared to a STORM experiment and they
show reasonable agreement.
A typical trajectory of a low-inertia particle in an isothermal ¯ow ®eld is shown in Fig. 1. It

can be seen that the particle drifts very close to the wall, but in the absence of body forces, low
particle inertia, or su�cient wall roughness the particle might be ejected out of the viscous
sublayer into more turbulent regions. If the particle is in the tracer limit, i.e., the particle
follows closely the ¯uid ¯ow, particle accumulation close to the wall can only happen
randomly in time, since ¯uid particles do not accumulate close to the wall. Yet, as a result of
the numerical method which will be used to determine particle±¯uid interactions, a spurious
drift (MacInnes and Bracco, 1992), of the particles down the velocity gradient, and therefore,
towards the wall, occurs. This limitation of the particle±eddy interaction model will be
commented on in what follows.
Wells and Stock (1983) pointed out that in the presence of strong body forces and for

particles of ``su�cient'' inertia the particle might cross the eddy rather than remain in it until
the integral time scale of the eddy expires. This leads to an increase in particle±eddy
interactions, and therefore, to faster particle di�usion. Graham and James (1996) suggested a
model that considers the reduced interaction time of an inertial particle by de®ning the
crossing time as a function of the quotient of the eddy length scale and the particle's initial
velocity. Accordingly, the interaction time of a particle with a given eddy becomes the lesser of
the eddy integral time scale and the crossing time. Low inertia particles, however, are not
a�ected by the presence of body forces, and hence they are fully caught in the eddy; in this
case the eddy life time de®nes the interaction time. We show numerically that if the ®nite size
of the eddies is included an increase in deposition velocity is observed.
The importance of crossing trajectories due to body forces, and hence considerations of

®nite-size eddies, is a well known problem in atmospheric modelling, see, for example, Wilson
et al. (1980, 1981). The way particle±¯uid interaction is modelled results in a spurious drift that
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depletes particles from high turbulence regions and accumulates them in regions of low
turbulence. They argued that particle accumulation close to the wall is a consequence of the
choice of the particle±eddy interaction scheme. This type of Monte-Carlo simulation is also
referred to as a discontinuous random walk, since a new eddy normal ¯uctuating velocity is
chosen only after the interaction time has been exceeded. In regions of high root mean square
velocities, namely in regions of high turbulence, during one particle±eddy interaction the
particle travels rather long distances down the velocity gradient. If the particle ends in a low
turbulence region the probability that the particle is propelled back into regions of high
¯uctuating velocities is small, and therefore, the particles remain there. Whereas Wilson et al.
(1980, 1981) proposed a correction to the particle equations of motion, in this work the results
of Wells and Stock (1983) and Graham and James (1996) are applied and the particle±eddy
interaction time is determined by considering eddies of ®nite extent. It is shown that the e�ect
of crossing trajectories is non-negligible only in the presence of thermophoresis.
A second aspect of our studies is the simulation of a realistic particle-size spectrum. This

could be done by simply averaging over the steady-state behaviour of each individual particle-
size class, which in a particle-tracking, Lagrangian approach would require several thousand
particle track calculations in each size class. Here, however, the problem is tackled by
discretizing the log-normal particle-size distribution in size bins, each of which contains the
same percentage of the particle distribution. This discretization leads to the calculation of a

Fig. 1. Typical particle trajectory in the boundary layer of turbulent pipe ¯ow: t�p � 0:02; initial velocity u�x � 18,

v�x � 12:
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reduced number of particle tracks compared to the additive averaging. Speci®cally, the total
number of particle tracks required to obtain steady-state deposition velocities is still in the
order of tens of thousands, as usually required in Monte-Carlo simulations, but sampled from
all particle-size classes.
In the next section the model is described in detail: the discretization of the particle size

distribution is described, and the particle equations of motion are speci®ed. The mean and the
¯uctuating components of the velocity, temperature, and thermophoretic force are presented,
and the choice of the particle±eddy interaction time is described. Section 3 gives a detailed
description of the numerical procedure used to solve sti� di�erential equations. Our numerical
results are presented and discussed in Section 4, and a brief section that summarizes the results
concludes the paper.

2. Model

2.1. Particle size distribution

The strongest in¯uence on the physical behaviour of a particle of given density is its size
followed by its shape. The e�ect of the latter may incorporated in the size distribution by
introducing the aerodynamic diameter, which describes the e�ective diameter of a hypothetical
spherical particle that would have had the same physical behaviour as the particle of irregular
shape. Consequently, particle shape is not considered in this work.
One of the aims of this work is to model deposition processes of a realistic aerosol such as,

for instance, the aerosol used in the STORM experiments. When the aerosol is generated its
distribution can be described approximately by a log-normal probability density function. The
experimentally observed spectrum covers a relatively large range of particle sizes from roughly
0.05 micron to 20 mm (Krasenbrink et al., 1996).
Most single-component aerosols are described by a log-normal cumulative distribution

function F, de®ned as

F�rp� �
�rp

0

1

r ln sg

������
2p
p exp

24ÿ ÿln rÿ ln rg

�2
2
ÿ
ln sg

�2
35 dr, �1�

where rp is the particle radius, rg is the geometric mean particle radius �ln rg � ln r), and sg is
the geometric standard deviation ��ln sg�2 � �ln rÿ ln rg�2]. In the numerical simulations the
distribution function is discretized by dividing the particle sizes �rp, min to rp, max� into 100 size
bins of size Drp, i � rp, iÿ rp, iÿ 1: The radii rp, i are chosen such that each size bin contain
1% of the particle distribution by numerically integrating the cumulative distribution function
from rp, iÿ1 till rp, i: Accordingly only a uniformly distributed random number is necessary to
select the bin number, but the resulting particle distribution is log-normal. In the discussion of
the numerical methods, Section 3, it is shown that this method is more advantageous than
choosing the particle size from a continuous log-normal distribution. The particle-radius
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dependent properties (for example, particle relaxation time, Knudsen number, etc.) are
evaluated at rp��rp, i� rp, i� 1�=2:
For the numerical simulations the particle sizes chosen were rp, min � 0:28 mm and rp, max �

13:5 mm. We checked that the error introduced by cutting o� the distribution at the low and
high ends is less than 1%. The mean and the variance of the distribution are determined from
experimental data, as well as the maximum particle radius.

2.2. Equations of motion

A given particle is tracked by solving its equation of motion, under the assumption that the
particle does not in¯uence the ¯ow and that it does not interact with other particles. That is,
the gas-particle system is considered dilute, and particle motion is entirely controlled by the
local ¯ow ®eld, aerodynamic forces and body forces. The particle acceleration is be determined
from Newton's second law of motionX

Fa, B � mp
dV

dt
, �2�

for constant particle mass mp. In Eq. (2) the forces Fa, B denote aerodynamic (index a) and
body forces (index B), V is the particle velocity, and t is time (bold variables refer to vectorial
quantities). For incompressible ¯ow and for particle density rp greater than the ¯uid density
rf�rp � rf�, as well as for relatively low inertia particles, a number of external forces may be
neglected such as gravity, electrical forces and Bassett's history terms. The resulting particle
equation of motion is then

mp
dV

dt
� 6pmrpC1C2�U ÿ V� � FL � FB, �3�

where m is the ¯uid dynamic viscosity, C1 the drag correction and C2 the Cunningham slip
correction to Stokes' drag law. The ¯ow velocity is U, and the last two terms are shear induced
lift forces �FL� and existing body forces �FB). The ®rst term on the right hand side is Stokes'
drag law for spherical particles. The correction functions C1x and C1y are necessary to account
for wall e�ects in bounded ¯ows. An analytical expression (Happel and Brenner, 1991) to
correct Stokes law for particle motion parallel and normal to the wall (x- and y-direction,
respectively) is used

C1x �
"
1ÿ 9

16

�
rp

y

�
� 1

8

�
rp

y

�3

ÿ 45

256

�
rp

y

�4

ÿ 1

16

�
rp

y

�5
#ÿ1

, �4�

C1y � y=rp

y=rp � A0Knÿ 1
, �5�

where y is the distance normal to the wall, A0 an empirical constant taken to be 1.4, and Kn
the particle Knudsen number, Kn � l=rp: The variable l is the mean free path of the
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surrounding ¯uid that can be evaluated from the viscosity expression l � m=� 2prfP�1=2, P being
the ¯uid pressure (Kennard, 1938).
The Cunningham slip correction C2, as de®ned in Eq. (3), is taken to be (Hinds, 1982),

C2 �
�
1� Kn

�
1:257� 0:4 exp� ÿ 1:1=Kn��	ÿ1 �6�

According to Sa�man (1965,1968) the lift force on a freely rotating sphere in a uniform shear
¯ow is

FL � 6:46mr2p �k=n�1=2�U ÿ V�, �7�

where n is the kinematic ¯uid viscosity and k the local ¯uid velocity gradient normal to the
wall. Lift and body forces are assumed to act only normal to the mean ¯ow direction, and lift
resulting from free rotation of the sphere is neglected. The importance of the aerodynamic lift
force on particle deposition has been extensively studied, and the reader is referred, for
example, to McLaughlin (1993), Cherukat and McLaughlin (1994), Mollinger and Nieuwstadt
(1996) and Wang et al. (1997). Mollinger and Nieuwstadt (1996) measured the lift force close
to the wall and found it higher than the prediction of the Sa�man expression for small
dimensionless particle radii. Young and Leeming (1997) argued that the lift force, and in
particular Sa�man lift, plays an important role in the inertia-moderated deposition regime
�t�p > 20, where t�p is the dimensionless particle relaxation number, cf. Eq. (11)). Wang et al.
(1997) instead proposed an ``optimum'' lift force expression which improves agreement with
experimental results on isothermal particle deposition and is approximately three times smaller
than the Sa�man lift. Hence, the choice of the lift force becomes important depending on the
regime of dimensionless particle relaxation times that are simulated. In this work only particle
deposition in the di�usion±impaction regime �0:2 < t�p < 20� is analyzed, where our results
suggest that the choice of the aerodynamic lift force does have an e�ect on particle deposition,
even though it is small. Given the uncertainties associated with the choice of the lift force our
choice of the Sa�man force should be considered as giving an upper bound on lift-induced
particle deposition.
Non-dimensionalized and decomposed in two dimensions the e�ect of the spanwise

coordinate being assumed negligible for deposition, the particle equations of motion become

dv�x
dt�
� C1xC2

ÿ
u�x ÿ v�x

�
t�p

, �8�

dv�y
dt�
� C1yC2

�
u�y ÿ v�y

�
t�p

� f �L � f �B , �9�

with

f �L � 0:727

"
jdu�x =dy�jÿ
rp=rf

�
t�p

#1=2ÿ
u�x ÿ v�x

�
: �10�
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Variables have been normalized via the friction velocity u�, and the kinematic viscosity:
y� � yu�=n, x� � xu�=n, u� � u=u�, v� � v=u�, t� � tu2

�=n, and t�p � tpu
2
�=n: The last quantity,

the particle relaxation time tp, is a measure of the particle's inertia relative to the viscous drag
it experiences, and it is de®ned as

tp �
2
ÿ
rp=rf

�
r2p

9n
: �11�

2.3. Thermophoretic body force

In this work the normal temperature gradient from the bulk ¯ow to the surrounding pipe
walls is considered constant along the streamwise direction. In a previous work (Zumwalt and
Kallio, 1990) only the e�ect of the mean temperature across the boundary layer on particle
deposition was studied. Here, the ¯uctuating part of the thermophoretic force is incorporated
in the calculation of particle deposition.
The thermophoretic force is expressed as

Fth � ÿ6pmnrpK
rT
T

, �12�

where T is the ¯uid temperature, and K the thermophoretic coe�cient. For the latter the
expression proposed by Talbot et al. (1980) is used that interpolates from particle sizes in the
free molecular regime to the continuum regime. The thermophoretic coe�cient becomes a
function of the Knudsen number and the thermal conductivities of the ¯uid and the particle, kf
and kp, respectively

K � 2Cs

ÿ
kf=kp � CtKn

�
�1� 3CmKn�

ÿ
1� 2kf=kp � 2CtKn

� : �13�

For complete accommodation the coe�cients are: Cs � 1:147 (thermal creep coe�cient), Ct �
2:2 (temperature jump coe�cient) and Cm � 1:146 (velocity jump coe�cient).
The normalized thermophoretic force becomes

f �th �3
K

t�p

dT �=dy�

T �w2T �
, �14�

where the normalized wall temperature T �w and ¯uid temperature T+ are

T � � rfcpu�T
0:023�kf=Dh�Re4=5Prm�Tb ÿ Tw� , �15�

T �w �
8:65Re3=40Pr1ÿn

j1ÿ Tb=Twj , �16�

as suggested by Zumwalt and Kallio (1990). In Eq. (14) the top sign corresponds to a cold wall
(attractive thermophoresis) and the bottom sign to a hot wall (repulsive thermophoresis). The
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speci®c heat capacity is cp, Dh is the hydraulic pipe diameter, Tb and Tw are bulk and wall
temperature (respectively), Re the Reynolds number, m � 0:3 for a cold wall, m � 0:4 for a hot
wall, and n is set to 0.02. The expression in the denominator of Eq. (15) represents a constant
heat ¯ux to the wall.

2.4. Turbulence model

The ¯uid velocity in the streamwise direction is described by the law of the wall in the
viscous sublayer and in the logarithmic outer layer, whereas the bu�er zone is interpolated by
a cubic spline ®t, e.g. Kallio and Reeks (1989),

u�x � y� y�R5, �17�

u�x � a0 � a1y
� � a2y

�2 � a3y
�3 5 < y� < 30, �18�

u�x � 2:5 ln y� � 5:5 30Ry�, �19�
where a0 � ÿ1:076, a1 � 1:445, a2 � ÿ0:04885, and a3 � 0:0005813:
Fluctuations are only considered normal to the wall. The r.m.s. normal velocity, u 0 �y , used

here is based on the experimental measurements by Finnicum and Hanratty (1985) who
suggested u 0 � � 0:005y�2 very close to the wall, and was later modi®ed for the entire boundary
layer by Kallio and Reeks (1989)

u 0�y �
0:005y�2

1� C y�n
0 < y� < 200, �20�

with C � 0:002923 and n � 2:218: The r.m.s. normal velocity is randomized by multiplying it
by a Gaussian distributed random number of zero mean and unit variance to obtain the
instantaneous eddy velocity. However, it should be noted that the assumption of a Gaussian
velocity ®eld close to the wall is questionable due to the strong shear in this region: both
experimental observations and theoretical analyses (Kim et al., 1987) suggest that the
distribution of the velocity ®eld is somewhat skewed.

2.5. Time scales and interaction time

Kallio and Reeks (1989) analyzed Laufer's (1954) experimental data on energy spectra and
dissipation rates within a turbulent boundary layer to obtain an expression for the eddy
integral life time over the boundary layer up to y� � 200: For the region very close to the wall
it was considered a constant, whereas a polynomial ®t was used further away from the wall.
They obtained:

T �L � 10 y�R5, �21�

T �L � b0 � b1y
� � b2y

�2 5 < y� < 200, �22�
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with b0 � 7:122, b1 � 0:5731, b2 � ÿ0:00129: The mean value for the time scale at a given
distance from the wall is randomized by multiplying it by an exponentially distributed random
number to ensure stationary turbulence. Moreover, the choice of an exponential distribution
ensures the calculated dispersion of ®ne particles reproduces theoretical predictions (Lin and
Chang, 1996).
The integral eddy length scale L+ is assumed to be directly correlated to the Lagrangian

time scale and the ¯uctuating velocity as follows

L� � ju�y jT �LNexp, �23�
where u�y is the instantaneous eddy velocity, obtained by randomizing the r.m.s normal velocity
Eq. (20), and Nexp is the exponentially distributed random number that is used to de®ne the
integral time scale.
Particle±eddy interactions depend on the eddy life time, and for a high-inertia particle, also

on the time required for the particle to cross an eddy. If the particle is placed in a ¯ow ®eld
subjected to a steep temperature gradient, strong body forces will develop. The particle
crossing time can then be much shorter than the life time of the eddy, and the particle will,
therefore, interact with more eddies than in the absence of body forces.
If the particle is very small with no or low inertia, it is said to be in the ``tracer limit'' and

can be considered as completely caught in the eddy. A procedure to de®ne the case when this
holds was proposed by Graham and James (1996), and it consists of the following steps. First,
the ratio of the eddy length scale to the particle relaxation time, L�=t�p , is determined and it is
compared to the particle±eddy relative velocity, jurj � ju�y ÿ v�y, startj, where v�y, start is the particle
velocity at the beginning of the particle±eddy interaction. If ju�y ÿ v�y; startj < L�=t�p , the particle
is considered to have insu�cient inertia to leave the eddy (it is caught in the eddy). Then the
interaction time is the eddy life time T �L : In all other cases the particle leaves the eddy and,
hence, the particle crossing time is determined to be

T �interact � min
ÿ
T �cross, T

�
L

�
, �24�

where

T �cross � ÿt�p log

 
1ÿ L�

jurjt�p

!
: �25�

Therefore, the time T �cross is the time it takes for a given particle to cross the eddy. It becomes
the particle±eddy interaction time if it is smaller than the integral time scale of the eddy. This
procedure ensures that the interaction time cannot exceed the eddy life time.

2.6. Turbulent temperature ®eld

The ¯uctuating ¯uid temperature is a passive scalar which is strongly correlated to the
¯uctuating normal velocity. In the spirit of the velocity decomposition, the dimensionless
temperature is decomposed into a mean component, T+, and a ¯uctuating component. Similar
to the law-of-the-wall velocity pro®le the mean dimensionless temperature in the turbulent
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boundary layer follows a universal pro®le (Hanel, 1990),

T � � Pr y� y�R5, �26�

T � � c0 � c1y
� � c2y

�2 � c3y
�3 5 < y� < 30, �27�

T � � 1:8 ln y� � 3:8 30 < y�, �28�
where Pr is the ¯uid Prandtl number, and the appropriate constants are c0 � 1:28ÿ 2:88Pr,
c1 � ÿ0:54� 2:21Pr, c2 � 0:0628ÿ 0:138Pr and c3 � ÿ0:00117� 0:00224Pr: As for the bu�er
zone of the velocity pro®le, the temperature bu�er region was ®tted with a cubic spline.
Tanimoto and Hanratty (1963) measured temperature ¯uctuations close to a wall in fully

developed turbulent pipe ¯ow for small heat ¯uxes at the wall. They compared their results to
Laufer's (1954)) energy data and observed a strong similarity between velocity and temperature
¯uctuations, both in magnitude and in their dependence on the distance to the wall. In
agreement with this observation, the stochastic properties of the instantaneous temperature
®eld are taken to be identical to the stochastic properties of the velocity ®eld. In the numerical
simulations described in the following section the y-dependence of the r.m.s. temperature
¯uctuations, T 0 �, is taken to be

T 0� � 0:005y�2

1� C y�n
, �29�

where the constants C and n are those used in Eq. (20). Similarly to the randomization of the
velocity ®eld, this r.m.s. value is then multiplied by the Gaussian distributed random number
chosen for the velocity ®eld. The instantaneous temperature ®eld is then determined by adding
the randomized r.m.s. ¯uctuating temperature to the mean temperature.
Considerations of temperature ¯uctuations render the thermophoretic force a ¯uctuating

quantity. In the spirit of the decomposition of all ¯uctuating quantities into a mean and a
Gaussian distributed r.m.s. quantity the normalized thermophoretic force is decomposed as
follows:

f �th � f �th � f 0�th, �30�
where, as before, the ®rst term on the right hand side is the mean thermophoretic force and the
second term is its randomized r.m.s. value. The ¯uctuating thermophoretic force is evaluated
by expanding the term 1/T in Eq. (14) to leading order in ¯uctuations. This expansion gives, to
leading order in ¯uctuations,

f �th �3
K

t�p

dT �=dy�

T �w2T �
, �31�

f 0�th �3
K

t�p

dT 0�=dy�

T �w2T �
, �32�
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where the quantity dT 0 �=dy� is de®ned to be the r.m.s. temperature gradient ¯uctuation. The
thermophoretic force expressions are derived under the assumption that the particle response
times to the stable, mean temperature ®eld and to the ¯uctuating temperature are equal.
Therefore, the determination of the instantaneous thermophoretic force requires values for

the r.m.s. temperature gradient. Krishnamoorthy and Antonia (1987) derived data on the
instantaneous temperature derivatives in a turbulent boundary layer from their measurements
and they provide ®gures with the distribution of mean square values of temperature derivatives
across the boundary layer. By means of a fourth-order spline ®t through their derived data we
obtained the following expression for the spatial variation of the r.m.s. temperature derivative
across the boundary layer:

dT 0�

dy�
� d0 � d1y

� � d2y
�2 � d3y

�3 � d4y
�4, �33�

where the ®tted parameters are d0 � 1:9806, d1 � ÿ0:052494, d2 � 0:00061411,
d3 � ÿ3:1216� 10ÿ6, and d4 � 5:6856� 10ÿ9: As before, the instantaneous ¯uctuating
thermophoretic force is obtained by randomizing its r.m.s. value. In Fig. 2 the dependence of
the r.m.s. temperature derivative and the r.m.s. temperature on the dimensionless distance to

Fig. 2. The r.m.s. temperature ¯uctuations and r.m.s. temperature gradient ¯uctuations in a turbulent boundary
layer.
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the wall is shown. The ®tting functions Eqs. (29), (33) and the experimental data of
Krishnamoorthy and Antonia (1987) are plotted.

3. Numerical procedure

At the beginning of a run the discrete particle-size log-normal distribution is determined as
described in Section 2.1. The particle radii rp, i that de®ne the size bins are stored in an array
so that the numerical integration of the cumulative distribution function is performed only
once at the start of the calculation. This method, which leads to a discrete particle size
distribution, is preferred to sampling particle radii from a continuous distribution not only for
reduced cpu usage, but mainly because it allows easy processing of the results, i.e. particles can
be easily counted in the appropriate size bins. In all reported simulations 100 size bins had
been chosen. A uniform random number is then used to pick the size-bin number containing a
random particle size. Afterwards, the Lagrangian eddy time scale, the eddy integral length
scale, the ¯uctuating velocity, the ¯uctuating temperature and the mean velocity and
temperature at this random starting position are chosen, as previously described.
The particle is released at the entrance of the pipe at a random position uniformly

distributed over the boundary layer. The initial position is also recorded by dividing the
boundary layer into 56 parallel y size bins. These y-bins are narrow close to the wall, where the
position of particles is stored every 0.2 wall units, and their size increases to ten wall units
further away from the wall. This very ®ne discretized mesh requires a higher number of
particle trajectories in order to obtain good statistics, but it allows a precise localization of the
peak of maximum particle number concentration. Given the particle position at release, the
initial values for the integration can be calculated, and the particle crossing time through the
eddy is de®ned. Following Reeks (1977) the initial particle normal velocity is chosen according
to the ratio t�p =T

�
L as follows

v�y �
u�y�

1� t�p =T
�
L

�1=2 : �34�

The initial streamwise particle velocity is set to two thirds of the mean ¯uid velocity. Random
numbers describing the eddy are kept constant over the entire particle±eddy interaction time,
while the mean and r.m.s. velocity and temperature values vary depending on the distance of
the particle to the wall. The particle position is determined after several integration steps, with
step sizes determined by the integration routine. The time integration for both temperature and
velocity is possible since the time scales for temperature and velocity ¯uctuations are taken to
be equal. At desired streamwise ``stations'' particle data are recorded. The stations are
distributed approximately uniformly over the pipe length, for instance at x� � 2000, 5000,
10,000, 15,000, etc. An additional pipe section is added at the beginning of the pipe to ensure
steady-state condition at the entrance.
The numerical integration scheme is based on the Bulirsch-Stoer method (Press et al., 1995).

In this method, a relatively large step size is chosen that is then repeatedly subdivided and an
extrapolation function is evaluated to a theoretical step size h � 0: The polynomial function
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extrapolates the results of a ®nite number of subdivisions to in®nite number of steps.
Additionally an even error function is chosen, allowing the polynomial function extrapolation
to be in terms of the variable h 2.
Since the integration routine uses an adaptive stepsize the recorded positions are not

precisely at the prede®ned distances, but particles are recorded as soon they have passed the
station. Particle positions are stored at the stations, until either the particle deposits or leaves
the pipe. If a particle leaves the top y-bin through the upper limit at y� � 200, it is returned
into the boundary layer at the position of its exit with opposite velocity. If a particle deposits
the location (x-section) is stored and its mass is added to the mass of previously deposited
particles to determine the total mass deposited in that x-section. A new particle of random size
is then released at the entrance with a new random initial normal position, and the procedure
is repeated.
After several thousands of particle tracks have been recorded the data are analysed. The

number of calculated particle tracks is such that the quantity of interest (e.g., concentration
pro®le, Eq. (35), or deposition velocity, Eq. (36)) attain steady-state values. Concentration
pro®les are calculated for each station in the following way:

ci � Ni y
�
200

Nstat

ÿ
y�i ÿ y�iÿ1

� , �35�

where ci is the normalized concentration in i-th y-bin, Ni is the number of particles passing
through this y-bin, and Nstat is the number of all particles passing the station. The variable y�200
is taken as the maximum wall region thickness (in our case y�200 � 200), and y�i is the distance
from the wall of the upper bound of the ith y-bin.
The deposition velocity in a given x-section is calculated as suggested by Zumwalt and

Kallio (1990) and also used by Liu and Agarwal (1974)

V �dep
�x�� � y�200U

�
ave

L��x�� ln

�
Nin

Nout

�
, �36�

where V �dep�x�� is the normalized deposition velocity in the x-section, U �ave is the mean velocity
between 0 < y� < 200, L��x�� is the section length, and Nin, Nout are the number of particles
entering and leaving the section, respectively. Results are mainly presented in terms of
deposition velocities, and for the cases where a particle-size spectrum is simulated the total
steady-state deposition velocity is presented.
Particle size distributions are recorded at the entrance of the pipe and at the exit. Since at

the entrance the particles are uniformly distributed over all size bins, the particles counted at
the pipe exit have to be normalized by the size-bin width, i.e., Drp, i as follows (Hinds, 1982),

f�rp, i� �
Nrp, i

rp, i ÿ rp, iÿ1
: �37�

Due to the narrow extent of the y-bins close to the wall, a high sampling rate is necessary to
obtain good statistics, in particular to obtain smooth concentration pro®les.
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4. Results and discussion

The aims of the numerical simulations presented in this section are: (1) to ensure that the
code reproduces well known results and experimental data under isothermal conditions; (2) to
quantify the e�ect of the mean thermophoretic force on total particle deposition and on
particle concentration close to the wall; (3) to study the in¯uence of a ¯uctuating
thermophoretic force on these two quantities; (4) to study the the e�ect of crossing trajectories
in the presence and absence of body forces (thermophoresis); and (5) to estimate what
constitutes a statistically su�ciently large number of particle tracks to simulate a log-normal
particle-size distribution.
Data from the Liu and Agarwal (1974) isothermal experiments were used to check the

performance of the code under isothermal conditions. These tests had been performed in a
simple geometry under well de®ned ¯ow conditions with smooth pipe walls. Particle
resuspension was negligible because olive-oil droplets, which stick reasonably well onto the
glass pipe walls, were used. The simulated steady-state dimensionless deposition velocities are
compared to experimental data in Fig. 3. For each test case 20,000 particle tracks were
calculated. There is a slight overprediction for particle sizes in the di�usion±impaction regime
�0:2 < t�p < 10), whereas a tiny underprediction may be noted in the inertia-moderated regime
�20 < t�p ). Wang et al. (1997) argued that this overprediction is a consequence of the Sa�man

Fig. 3. Comparison of Liu and Agarwal's isothermal tests with numerical simulation.
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lift, whereas their proposed smaller ``optimum'' force improves agreement. Nevertheless, the
results compare reasonably well to experimental data, and the change in slope with increasing
particle relaxation time is reproduced. These results are in agreement with previous Monte-
Carlo simulations of isothermal particle deposition (Kallio and Reeks, 1989).
A series of simulations of an experiment with a temperature gradient across the turbulent

boundary layer were performed. The experimental data for the material properties, the pipe
geometry, and thermal hydraulic conditions, based on the experimental conditions of STORM
experiment SD07, are shown in Table 1. The particle-size distribution was chosen to be log-
normal with rg � 1:5 mm and sg � 1:5278, corresponding to a minimum and maximum particle
relaxation time of t�p 10:05 and t�p 1110, respectively. Hence, most particles are in the
di�usion±impaction deposition regime. The results of these simulations are shown in Figs. 4
and 5: total (summed over all particle sizes) steady-state deposition velocities are plotted as
functions of axial position.
A number of sensitivity calculations grouped in two sets (one in the presence of a

thermophoretic force, Figs. 4, and one in its absence, Fig. 5) were performed. In these the
e�ect of particle crossing trajectories and aerodynamic lift was studied, the base case being the
simulation of thermophoretic deposition only.
From Figs. 4 and 5 it becomes clear that the temperature gradient has the dominant e�ect

on deposition velocity. In particular, comparison of Figs. 4 and 5 reveals an approximate 25-
fold increase in deposition velocity for a temperature di�erence of 113 K. The importance of
the mean thermophoretic force on particle deposition was also noted in Zumwalt and Kallio
(1990) and in Thakurta et al. (1998).
The simulations shown in Fig. 4 were performed with a mean particle radius rg � 1:5 mm.

Accordingly, most particles do not have su�cient inertia to leave the eddy before it is
dissipated, therefore, the e�ect of crossing trajectories is minor. However, the combination of
lift and ®nite-size eddies has a stronger e�ect on particle deposition than subjecting the
particles to each one separately. The e�ect of crossing trajectories (in the presence of a lift
force) is particularly small in the absence of thermophoresis, Fig. 5. Under isothermal
conditions lift increases deposition, while additional inclusion of ®nite-size eddies results in a
negligible change of the total deposition velocity. Therefore, the consideration of ®nite-size
eddies seems advisable in the presence of a thermophoretic force; under isothermal conditions
(and for the particle relaxation times under consideration) the e�ect of crossing trajectories in
the presence of lift is negligible. It should be noted, however, that these conclusions are based
on small changes of steady-state deposition velocities, approximately 3±5%.

Table 1

SD07 experiment: main experimental conditions during the deposition phase

Carrier/quench gas Steam/N2 Wall temperature 4908C

Aerosol Tin dioxide Bulk temperature 6038C
Particle density 1611 kg/m3 Mean centerline velocity 24.7 m/s
Particle heat conductivity 17.28 W/(mK) Reynolds number 24,000

Prandtl number 0.986 Fluid viscosity 56:6� 10ÿ6 m2/s
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A clear demonstration of the e�ect of crossing trajectories can be seen in a simulation with
rg � 10 mm, shown in Fig. 6. The e�ect of crossing trajectories clearly exceeds the in¯uence of
lift, leading to an increase in steady-state deposition velocity of approximately 15%. This is
due to increased particle±eddy interactions: in the presence of thermophoresis a particle crosses
the eddy earlier, hence, it encounters more eddies increasing its e�ective di�usion. If ®nite-size
eddies are not considered, lift does lead to a marked increase in deposition velocity. This
observation, however, should be considered approximate given the uncertainties associated to
the application of Sa�man lift close to the wall. When the e�ects of lift and ®nite-size eddies
are combined, the resulting deposition velocity is not merely the sum of deposition velocities
due to lift and ®nite-size eddies. As shown in Figs. 4±6 the e�ects of lift and ®nite-sized eddies
are not additive.
Simulations using di�erent temperature gradients across the boundary layer show a similar

e�ect of crossing trajectories. In Fig. 7 we show two simulations �rg � 1:5 mm) with a
temperature di�erence of 20 K and of 120 K: consideration of crossing trajectories increases
the deposition velocity, but approximately by the same amount in both cases.
The in¯uence of thermophoresis on particle-concentration pro®les is shown in Fig. 8. The

sharp concentration peak near the wall is almost ¯attened, since particles close to the wall
deposit in the presence of a strong body force (thermophoresis). A similar result was obtained
in a recent study of thermophoretic deposition in a direct numerical simulation of turbulent

Fig. 4. Dependence of total, steady-state deposition velocity on lift and on eddy ®nite length scale �rg � 1:5 mm,

thermophoretic case).
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channel ¯ow (Thakurta et al., 1998). However, the expected increase of the wall concentration
in the presence of thermophoresis (particle ¯ux at the wall increases) is not reproduced in our
simulations because the bin size was too large to obtain an accurate estimate of the wall
concentration. The change of the concentration pro®le suggests that eddy impaction and
thermophoretic deposition are not simply additive. Hence, simple addition of deposition
velocities, as is usually done in one-dimensional ®ssion product transport codes, may be in
considerable error in determining total particle deposition velocities. The e�ect of the lift force
and ®nite-size eddies is minimal.
The e�ect of thermophoresis on the particle-size distribution is presented in Fig. 9. The

cumulative distribution function and the probability density function at the entrance and the
exit of the pipe are determined and compared. In the absence of thermophoresis changes of the
distribution function are very small, whereas in its presence a small shift to smaller particles is
noted and the distribution becomes sharper; the pipe acts as a ®lter removing particles from
both tails of the distribution.
One the main objectives of our work was the study of the e�ect of temperature ¯uctuations

on particle deposition. In Fig. 10 the dimensionless deposition velocity for three sensitivity
calculations is presented. All cases were run in the presence of a mean thermophoretic force. It
is apparent that temperature ¯uctuations have a small e�ect on particle deposition. A similar

Fig. 5. Dependence of total, steady-state deposition velocity on lift and on eddy ®nite length scale �rg � 1:5 mm,

isothermal case).
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conclusion was reached in the previously cited analysis of thermophoretic deposition of small
particles in turbulent channel ¯ow (Thakurta et al., 1998). Additionally, lift and reduced
particle±eddy interaction time tend to increase particle deposition. Even though the e�ect of
the ¯uctuating thermophoretic force is small it is comparable (for the simulated conditions) to
the e�ect of lift and crossing trajectories. Therefore, all three e�ects should be included in
simulations of particle deposition in heated turbulent boundary layers.
One reason for the small e�ect of temperature ¯uctuations might be the choice of the

Gaussian distribution functions of zero mean for both the velocity and the temperature ®elds
(close to the wall). It may be argued that a di�erent choice for the distribution functions, e.g.,
a skewed distribution as would be expected in shear ¯ow (Kim et al., 1987), would have a
pronounced e�ect on particle deposition. Under the simulated conditions the mean temperature
di�erence between the bulk gas and the wall was relatively large, but for a smaller temperature
di�erence the e�ect of temperature ¯uctuations might become more signi®cant for particle
deposition. Finally, removal of the assumption of identical temperature and velocity
distributions might have an e�ect on particle deposition.
Simulation results are also compared to experimental data from a typical STORM

experiment, International Standard Problem ISP-40, (De Los Reyes Castelo et al., 1999).
Although various e�ects have not been included in the model (such as resuspension, Brownian
di�usion and wall roughness) results show good agreement with the experiment. Since the

Fig. 6. Dependence of total, steady-state deposition velocity on lift and on eddy ®nite length scale �rg � 10 mm,
thermophoretic case).
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aerosol had not been neutralised, electrophoresis might have had a signi®cant contribution to
particle deposition, yet the existence of a settling chamber before the deposition pipe indicates
that the e�ect of electrical charges was minimized.
The experimental data were presented as deposited mass per unit length. The aerosol used in

the experiment was tin dioxide in a steam/air/argon mixture, with an estimated particle density
of 4000 kg/m3. The corresponding deposited mass per unit length was calculated and it is
compared to the experimental results in Fig. 11. Although the local simulation results are
lower (at the entrance of the pipe) and higher (at the exit of the pipe) than the experimental
data, the tendency is similar in both cases and the total deposited mass di�ers by
approximately 12% (161 g experiment, 181 g calculated). The agreement is reasonable,
especially in predicting the decrease in particle deposition at approximately 3 m from the
entrance of the pipe (middle of pipe length). In the calculation it was assumed that the
temperature gradient in the turbulent core is virtually zero, therefore, the e�ect of
thermophoresis is restricted to the turbulent boundary layer, and hence the boundary layer
model is su�cient for thermophoretic simulations. The aerosol was assumed equally distributed
over the entire pipe cross section, therefore, a certain percentage of the particle ¯ow (equal to
the percentage of the boundary layer thickness to the pipe radius) was injected in the boundary
layer.
Except for the Liu and Agarwal isothermal test simulations, all calculations were performed

Fig. 7. E�ect of crossing trajectories on particle deposition as a function of bulk to wall temperature di�erence

�rg � 1:5 mm).
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with a particle-size spectrum, rather than at a particular particle diameter. Usually 20,000
particle tracks were calculated, corresponding to approximately only 200 particle tracks in each
particle size bin. A 50,000 particle tracks calculation was performed as well, but the results did
not change signi®cantly, demonstrating that steady-state conditions were obtained with 20,000
particle tracks.

5. Conclusions

Lagrangian random-walk simulations were performed to study thermophoretic particle
deposition in a turbulent boundary layer. The e�ect of thermophoresis on particle deposition
velocities and particle concentrations close to the wall was examined, and results were
compared to experimental data. Emphasis was placed on the incorporation of an instantaneous
temperature ®eld, assumed to be similar to the instantaneous velocity ®eld, and the
corresponding ¯uctuating thermophoretic force. For the latter the r.m.s temperature gradient
was chosen from a fourth-order ®t to derived experimental data. Sensitivity calculations were
performed on the e�ect of crossing trajectories and on aerodynamic lift in a heated and an
isothermal ¯ow ®eld. The simulations were performed for a realistic particle-size spectrum,

Fig. 8. Particle concentration pro®les (close to the wall) in an isothermal and a heated boundary layer: temperature
¯uctuations neglected.
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with particle sizes ranging over approximately two orders of magnitude. A limited number of
particle tracks was found su�cient for the determination of steady-state total (for all particle
sizes) deposition velocity. Input data were based on experiments from the STORM
experimental programme.
The code successfully reproduced the deposition velocity for single-particle sizes in an

isothermal ¯ow ®eld (Liu and Agarwal, 1974). The introduction of a temperature gradient in
the turbulent boundary layer lead to a strong increase in particle deposition. The isothermal
concentration pro®le, which shows noticeable particle accumulation in the viscous sublayer,
becomes almost ¯at in the presence of thermophoresis.
Crossing trajectories were determined to have a signi®cant e�ect on particle deposition in the

presence of strong body forces for high inertia particles, whereas their e�ect was negligible in
isothermal cases and for particles of low inertia. For relatively small particles changes of the
temperature gradient across the boundary layer did not show an increased e�ect of crossing
trajectories on particle deposition. Therefore, in isothermal ¯ow and for low inertia particles
the particle±eddy interaction time can be set equal to the Lagrangian eddy time scale;
otherwise, for particles with su�cient inertia the crossing time through the eddy should be
rede®ned as the smaller of the crossing time and the eddy time scale, as proposed by Graham
and James (1996). For the particle sizes considered (particle relaxation times in the di�usion±
impaction deposition regime) the e�ect of Sa�man lift was to increase the deposition velocity:

Fig. 9. Particle size distribution at the entrance and at the exit of the test section: isothermal and heated boundary

layer.
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however, the increase was relatively small, especially under isothermal conditions. The e�ect of
lift and crossing trajectories on particle deposition was found to be non additive.
The e�ect of a ¯uctuating thermophoretic force on particle deposition was determined to be

small, but non-negligible. Moreover, its contribution to particle deposition was comparable to
that of lift and crossing trajectories. This observation suggests that in the presence of a strong
temperature gradient all three e�ects should be considered. It remains the task of future work
to determine whether the relatively small contribution of temperature ¯uctuations on
deposition would be signi®cantly modi®ed if the velocity and temperature distributions were
not taken to be Gaussian (for example, they may be taken to be skewed, as expected for such
distributions close to the wall in a shear ¯ow) or if these two distribution were taken to be
signi®cantly di�erent. Similarly, a signi®cant change in deposition velocity is expected with the
inclusion of a model for bursting phenomena close to the wall.
Simulation results were compared to experimental data from the benchmark experiment ISP-

40. We found that the code was capable to calculate the total deposited mass in agreement
with the experiment, and to determine the location of decrease of the deposition velocity i.e.,
regions of higher or lower particle deposition were identi®ed.
Our main conclusions that the mean thermophoretic force may lead to considerable increase

of particle deposition, and a concomitant decrease of the concentration peak close to the wall,
and that the ¯uctuating thermophoretic force has a little e�ect on the deposition velocity are in
agreement with a recent calculation of thermophoretic deposition in a direct numerical

Fig. 10. E�ect of temperature ¯uctuations on total, steady-state deposition velocity.
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simulation of turbulent channel ¯ow (Thakurta et al., 1998). Note, however, that the
approaches used are di�erent: a stochastic Monte-Carlo approach was used in this work to
simulate the velocity and temperature ®elds, while the ¯uid ¯ow was determined by a direct
numerical simulation in Thakurta et al. (1998).

Acknowledgements

We would like to thank Mike Reeks, Joaquim Areia CapitaÄ o, Alan Jones, and the members
of the STORM project for useful discussions.

References

Cherukat, P., McLaughlin, J.B., 1994. The inertial lift on a rigid sphere in a linear shear ¯ow ®eld near a ¯at wall.
J. Fluid Mech 263, 1±18.

De Los Reyes Castelo, A., Areia CapitaÄ o, J., De Santi, G., 1999. International standard problem 40: aerosol
deposition and resuspension. European Commission EUR 18708 EN.

De Santi, G.F., Hummel, R., Valisi, M., De Los Reyes, A., 1993. STORM project, a study on aerosol resuspension

Fig. 11. Comparison of total deposited mass as a function of axial position: ISP-40 experiment and numerical
simulation.

C. KroÈger, Y. Drossinos / International Journal of Multiphase Flow 26 (2000) 1325±13501348



mechanisms under prototypical severe accident conditions. In: Severe Accident Research Workshop, Tokyo,

November, 1±2.

Finnicum, D.S., Hanratty, T.J., 1985. Turbulent temperature ¯uctuations close to a wall. Phys. Fluids 28, 1654±

1658.

Graham, D.I., James, P.W., 1996. Turbulent dispersion of particle using eddy interaction models. Int. J. Multiphase

Flow 22, 157±175.

Hanel, B., 19990. EinfuÈ hrung in die konvektive WaÈ rme- und Sto�uÈ bertragung. Verlag Technik, Berlin.

Happel, J., Brenner, H., 1991. Low Reynolds Number Hydrodynamics. Kluwer Academic Publishers, Netherlands.

Hinds, W.C., 1982. Aerosol Technology. Wiley, New York.

Im, K.H., Ahluwalia, R.K., Chuang, C.F., 1985. RAFT: a computer code for formation and transport of ®ssion

product aerosols in LWR primary circuit. Aerosol Sci. Technol 4, 125±140.

Kallio, G.A., Reeks, M.W., 1989. A numerical simulation of particle deposition in turbulent boundary layers. Int. J.

Multiphase Flow 15, 433±446.

Kennard, E.H., 1938. Kinetic Theory of Gases. McGraw-Hill, New York.

Kim, J., Moin, P., Moser, R., 1987. Turbulence statistics in fully developed channel ¯ow at low Reynolds number.

J. Fluid Mech 177, 133±166.

Krasenbrink, A., Hummel, R., Areia CapitaÄ o, J., 1996. STORM Test SD07, Deposition of tin dioxide in partially

insulated pipes with steam as carrier gas. European Commission, Joint Research Centre Technical Note I.96.185.

Krishnamoorthy, L.V., Antonia, R.A., 1987. Temperature dissipation measurements in a turbulent boundary layer.

J. Fluid Mech 176, 265±281.

Laufer, J., 1954. The structure of turbulence in fully developed pipe ¯ows. NACA Report 1174, 1±18.

Lin, C.-H., Chang, L.-F.W., 1996. Analytical approach to derive the ®ne particle dispersion properties inherent in

numerical particle trajectory models. J. Aerosol Sci 27, 618±694.

Liu, B.Y.H., Agarwal, J.K., 1974. Experimental observation of aerosol deposition in turbulent ¯ow. J. Aerosol Sci

5, 145±155.

Lyons, S.L., Hanratty, T.J., McLaughlin, J.B., 1991. Direct numerical simulation of passive heat transfer in a

turbulent channel ¯ow. Int. J. Heat Mass Transfer 34, 1149±1161.

MacInnes, J.M., Bracco, F.V., 1992. Stochastic particle dispersion modeling and the tracer particle limit. Phys.

Fluids A 4, 2809±2824.

McLaughlin, J., 1993. The lift on a small sphere in wall-bounded linear shear ¯ows. J. Fluid Mech 246, 249±265.

Mollinger, A.M., Nieuwstadt, F.T.M., 1996. Measurement of the lift force on a particle ®xed to the wall in the

viscous sublayer of a fully developed turbulent boundary layer. J. Fluid Mech 316, 285±306.

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., 1995. Numerical Recipes in C, 2nd ed. Cambridge

University Press, Cambridge.

Reeks, M.W., 1977. On the dispersion of small particles suspended in an isotropic turbulent ¯uid. J. Fluid Mech 83,

529±546.

Sa�man, P.G., 1965. The lift on a small sphere in a slow shear ¯ow. J. Fluid Mech 22, 385±400.

Sa�man, P.G., 1968. Corrigendum to The lift on a small sphere in a slow shear ¯ow. J. Fluid Mech 31, 624.

Schlichting, H., 1979. Boundary-Layer Theory. McGraw-Hill, New York.

Tanimoto, S., Hanratty, T.J., 1963. Fluid temperature ¯uctuations accompanying turbulent heat transfer in a pipe.

Chem. Engng. Sci 18, 307±311.

Talbot, L., Cheng, R., Schefer, R., Willis, D., 1980. Thermophoresis of particles in a heated boundary layer. J.

Fluid Mech 101, 737±758.

Thakurta, D.G., Chen, M., McLaughlin, J.B., Kontomaris, K., 1998. Thermophoretic deposition of small particles

in a direct numerical simulation of turbulent channel ¯ow. Int. J. Heat Mass Transfer 41, 4167±4182.

Wang, Q., Squires, K.D., Chen, M., McLaughlin, J.B., 1997. On the role of the lift force in turbulence simulations

of particle deposition. Int. J. Multiphase Flow 23, 749±763.

Wei, T., Wilmarth, 1989. Reynolds number e�ects on the structure of a turbulent channel ¯ow. J. Fluid Mech. 204,

57±95.

Wells, M.R., Stock, D.E., 1983. The e�ect of crossing trajectories on the dispersion of particles in turbulent ¯ow. J.

Fluid Mech 136, 31±62.

Wilson, J.D., Thurtell, G.W., Kidd, G.E., 1980. Numerical simulation of particle trajectories in inhomogeneous

C. KroÈger, Y. Drossinos / International Journal of Multiphase Flow 26 (2000) 1325±1350 1349



turbulence, II: Comparison of predictions with experimental data for the atmospheric surface layer. Boundary-
Layer Meteorology 21, 443±463.

Wilson, J.D., Thurtell, G.W., Kidd, G.E., 1981. Numerical simulation of particle trajectories in inhomogeneous
turbulence, I: Systems with variable turbulent velocity scale. Boundary-Layer Meteorology 21, 423±441.

Young, J., Leeming, A., 1997. A theory of particle deposition in turbulent pipe ¯ow. J. Fluid Mech 340, 129±159.

Zumwalt, L.C., Kallio, G., 1990. A numerical simulation of thermophoretic deposition in turbulent ¯ow.
Proceedings Spring Meeting ASME Fluids Engineering, FED 91, 1±9.

C. KroÈger, Y. Drossinos / International Journal of Multiphase Flow 26 (2000) 1325±13501350


